

Institute for Interlaboratory Studies

Results of Proficiency Test Chromium (VI) in Leather/Footwear March 2022

Organized by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Author:ing. G.A. Oosterlaken-BuijsCorrectors:ing. R.J. Starink & ing. M. MeijerApproved by:ing. A.S. Noordman-de Neef

Report:

iis22A05

June 2022

# CONTENTS

| 1   |                                                                    | 3  |
|-----|--------------------------------------------------------------------|----|
| 2   | SET UP                                                             | 3  |
| 2.1 | QUALITY SYSTEM                                                     | 3  |
| 2.2 | PROTOCOL                                                           | 3  |
| 2.3 | CONFIDENTIALITY STATEMENT                                          | 4  |
| 2.4 | SAMPLES                                                            | 4  |
| 2.5 | ANALYZES                                                           | 5  |
| 3   | RESULTS                                                            | 5  |
| 3.1 | STATISTICS                                                         | 5  |
| 3.2 | GRAPHICS                                                           | 6  |
| 3.3 | Z-SCORES                                                           | 7  |
| 4   | EVALUATION                                                         | 7  |
| 4.1 | EVALUATION PER TEST                                                | 8  |
| 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES               | 8  |
| 4.3 | COMPARISON OF THE PROFICIENCY TEST OF MARCH 2022 WITH PREVIOUS PTS | 8  |
| 4.4 | EVALUATION OF THE ANALYTICAL DETAILS                               | 9  |
| 5   | DISCUSSION                                                         | 9  |
| 6   | CONCLUSION                                                         | 10 |

# Appendices:

| 1. | Data, statistical and graphic results | 11 |
|----|---------------------------------------|----|
| 2. | Analytical details                    | 17 |
| 3. | Number of participants per country    | 19 |
| 4. | Abbreviations and literature          | 20 |
|    |                                       |    |

## **1** INTRODUCTION

Chromium (VI) is a toxic and mutagenic substance. In the leather industry Chromium containing substances could be used in the production process. Of all Chromium compounds, primarily Chromium (VI) was used, but this has been replaced by the less hazardous Chromium (III) in most applications. The regulations for the presence of Chromium (VI) for leather continue to become stricter. But even if no Chromium (VI) is used in the production of leather, it can still be formed from Chromium (III), when production or end-use circumstances are not controlled.

Since 2014 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of Chromium (VI) in Leather/Footwear every year. During the annual proficiency testing program 2021/2022 it was decided to continue the proficiency test for the determination of Chromium (VI) in Leather/Footwear.

In this interlaboratory study 143 laboratories in 34 countries registered for participation, see appendix 3 for the number of participants per country. In this report the results of the Chromium (VI) in Leather/Footwear proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

# 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory.

It was decided to send one aged leather sample of 5 grams positive on Chromium (VI) and labelled #22540.

The participants were asked to report the rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

# 2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

# 2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

# 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

# 2.4 SAMPLES

A batch of gray colored leather positive on Chromium (VI) was selected. The leather was grinded and aged. After homogenization about 185 plastic bags were filled with approximately 5 grams of leather each, vacuumed and labelled #22540. The homogeneity of the subsamples was checked by determination of Chromium (VI) in accordance with ISO17075-2 on 8 stratified randomly selected subsamples.

|                 | Chromium (VI)<br>in mg/kg |
|-----------------|---------------------------|
| sample #22540-1 | 5.4                       |
| sample #22540-2 | 4.6                       |
| sample #22540-3 | 5.2                       |
| sample #22540-4 | 5.4                       |
| sample #22540-5 | 4.8                       |
| sample #22540-6 | 5.3                       |
| sample #22540-7 | 5.4                       |
| sample #22540-8 | 4.8                       |

Table 1: homogeneity test results of subsamples #22540

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                                 | Chromium (VI)<br>in mg/kg |
|---------------------------------|---------------------------|
| r (observed)                    | 0.9                       |
| reference test method           | ISO17075-2:17             |
| 0.3 x R (reference test method) | 0.9                       |

Table 2: evaluation of the repeatability of subsamples #22540

The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one sample labelled #22540 was sent on February 23, 2022.

# 2.5 ANALYZES

The participants were requested to determine Chromium (VI) (colorimetric and/or chromatographic).

To ensure homogeneity it was requested not to use less than 0.5 grams of the sample per determination. It was also requested to report if the laboratory was accredited to determine the reported component and to report some analytical details.

It was explicitly requested to treat the sample as if it was a routine sample, but not to age nor to dry the sample nor to determine volatile matter. The amount of sample was not sufficient to allow aging and/or determine the volatile matter content. Also, it was requested to keep the sample stored dark, dry, cool  $(4 - 10 \ ^{\circ}C)$  and vacuum packed until the start of extraction.

Furthermore, it was also requested to report the test results using the indicated units on the report form and not to round the results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

## 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

## 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

# 3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

# 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{(target)} = (test result - average of PT) / target standard deviation
```

The  $z_{(target)}$  scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

|     | z | < 1 | good           |
|-----|---|-----|----------------|
| 1 < | z | < 2 | satisfactory   |
| 2 < | z | < 3 | questionable   |
| 3 < | z |     | unsatisfactory |

# 4 EVALUATION

In this proficiency test some problems were encountered with the dispatch of the samples. Fourteen participants reported test results after the final reporting date and four other participants were not able to report any test results. Not all participants were able to report all tests requested.

In total 139 participants reported 189 numerical test results. Observed were 2 outlying test results, which is 1.1%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

# 4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 4.

<u>Chromium (VI) (colorimetric)</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the requirements of ISO17075-1:17.

<u>Chromium (VI) (chromatographic)</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ISO17075-2:17.

## 4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 \* standard deviation) and the target reproducibility derived from reference methods are presented in the next table.

| Parameter                       | unit  | n   | average | 2.8 * sd | R(lit) |
|---------------------------------|-------|-----|---------|----------|--------|
| Chromium (VI) (colorimetric)    | mg/kg | 123 | 8.02    | 3.31     | 3.60   |
| Chromium (VI) (chromatographic) | mg/kg | 64  | 7.79    | 2.75     | 3.39   |

Table 3: reproducibilities of tests on sample #22540

Without further statistical calculations, it can be concluded that there is a good compliance of the group of participating laboratories with the reference test methods.

## 4.3 COMPARISON OF THE PROFICIENCY TEST OF MARCH 2022 WITH PREVIOUS PTS

|                                    | March<br>2022 | May<br>2021 | May<br>2020 | May<br>2019 | April<br>2018 |
|------------------------------------|---------------|-------------|-------------|-------------|---------------|
| Number of reporting laboratories   | 139           | 152         | 142         | 148         | 162           |
| Number of test results             | 189           | 204         | 193         | 192         | 190           |
| Number of statistical outliers     | 2             | 5           | 8           | 7           | 2             |
| Percentage of statistical outliers | 1.1%          | 2.5%        | 4.1%        | 3.6%        | 1.1%          |

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared, expressed as relative standard deviation (RSD) of the PTs, see next table.

| Component                       | March<br>2022 | May<br>2021 | May<br>2020 | May<br>2019 | 2015 -<br>2018 | R(lit)*) |
|---------------------------------|---------------|-------------|-------------|-------------|----------------|----------|
| Chromium (VI) (colorimetric)    | 15%           | 10%         | 13%         | 11%         | 15-33%         | 14-18%   |
| Chromium (VI) (chromatographic) | 13%           | 11%         | 14%         | 6%          | 10-31%         | 9-21%    |

Table 5: development of the uncertainties over the years

\*) R(lit) calculated at 5 and 25 mg/kg respectively

The relative standard deviations observed in this PT are in line with the relative standard deviations observed in previous PTs.

## 4.4 EVALUATION OF THE ANALYTICAL DETAILS

The reported analytical details from the participants are listed in appendix 2.

- About 85% of the reporting participants mentioned to be accredited for the determination of Chromium (VI) in leather.
- About 90% of the reporting participants used a sample intake between 1 and 2 grams.
- A large difference was found for the time period between opening of the vacuum packed sample and extraction. About 60% of the participants analyzed the sample "immediately" or within 10 minutes. About 25% of the participants did the analyzes after 10 minutes and within one hour. About 15% of the participants started the extraction after 1 hour up to 20 days after opening of the vacuum packed sample.
- All participants, except one, reported to have measured a pH before and after extraction between pH 7 and pH 8, and thus in accordance with the test methods ISO17075-1:17 and ISO17075-2:17.

For Chromium (VI) colorimetric and Chromium (VI) chromatographic are the calculated reproducibilities in (full) agreement the requirements of the reference test method, therefore no separate statistical analysis has been performed.

## 5 DISCUSSION

As Chromium (VI) is carcinogenic, mutagenic and toxic for reproduction, the regulations within countries tend to adopt a zero-tolerance policy. In actual practice this means below the detection limit of the widely accepted test method ISO17075:2017 parts 1 and 2. Examples of regulations can be found in below table.

| Chromium (VI)                                                                                 | Limit    | Comment                                                   |
|-----------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------|
| OEKO-TEX® 100                                                                                 | <3 mg/kg | For all classes                                           |
| EU: REGULATION No 301/2014 amending Annex XVII to Regulation (EC) No 1907/2006 of the (REACH) | <3 mg/kg | Implementation: 01-05-2014<br>Reported only as dry-weight |

Table 6: Regulation on Chromium (VI)

When the results of this interlaboratory study were compared to these limits it may be noticed that almost all participants, except one, would make identical decisions about the acceptability of the leather. Almost all participants would have rejected sample #22540. Based on the colorimetric test result one participant would have released sample #22540.

# 6 CONCLUSION

It can be concluded that the group of participants have no problems with the determination of Chromium (VI) colorimetric and chromatographic in this proficiency test. However, each laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and thus increase of the quality of the analytical results.

### **APPENDIX 1**

| Determination of Chromium ( | (VI      | ) ( | colorimetric | ) in | sam | ple | #22540: | results | in | ma/      | /kc | ı |
|-----------------------------|----------|-----|--------------|------|-----|-----|---------|---------|----|----------|-----|---|
|                             | <b>`</b> |     | 1            | /    |     |     |         |         |    | <u> </u> |     |   |

| lab  | method         | value        | mark | z(targ)       | remarks              |
|------|----------------|--------------|------|---------------|----------------------|
| 110  | ISO17075-1     | not analyzed |      |               |                      |
| 210  | ISO17075-1     | 8.11         |      | 0.07          |                      |
| 362  | ISO17075-1     | 9.545        | С    | 1.18          | first reported 12.53 |
| 523  | ISO17075-1     | 7.88         |      | -0.11         |                      |
| 551  |                |              |      |               |                      |
| 623  | ISO17075-1     | 4.46         | С    | -2.77         | first reported 3.43  |
| 840  | ISO17075-1     | 7.9          |      | -0.09         |                      |
| 841  | ISO17075-1     | 7.44         |      | -0.45         |                      |
| 1910 | ISO17075-1     | 7.197        |      | -0.64         |                      |
| 2102 | ISO17075-1     | 8 621        |      | 0.47          |                      |
| 2115 |                |              |      |               |                      |
| 2120 | ISO17075-1     | 5 60         |      | -1 88         |                      |
| 2121 | ISO17075-1     | 10 446       |      | 1 88          |                      |
| 2128 | ISO17075-1     | 6 777        |      | -0.97         |                      |
| 2132 | ISO17075-1     | 7 9497       |      | -0.06         |                      |
| 2135 | ISO17075-1     | 6.43         |      | -1 24         |                      |
| 2100 | ISO17075-1     | 0.40         |      | 1.24          |                      |
| 2107 | 19017075 1     | 6.28         |      | 1.05          |                      |
| 2140 | 19017075 1     | 7 77         |      | -1.00         |                      |
| 2159 | 19017075-1     | 8.0/1        |      | -0.20         |                      |
| 2105 | 19017075-1     | 6 529        |      | 0.02          |                      |
| 2100 | 13017075-1     | 0.000        |      | -1.15         |                      |
| 2201 | 15017075-1     | 0.334        |      | 0.24          |                      |
| 2215 | 13017075-1     | 0.112        |      | 0.56          |                      |
| 2223 | 10047075 4     |              |      |               |                      |
| 2228 | 15017075-1     | 8.169        |      | 0.11          |                      |
| 2230 | ISO17075-1     | 9.7          |      | 1.30          |                      |
| 2232 | ISO17075-1     | 9.685        |      | 1.29          |                      |
| 2241 | ISO17075-1     | 8.74         |      | 0.56          |                      |
| 2250 | ISO17075-1     | 5.9          | С    | -1.65         | first reported 4.6   |
| 2256 | ISO17075-1     | 8.045        |      | 0.02          |                      |
| 2290 | ISO17075-1     | 7.6          |      | -0.33         |                      |
| 2297 | ISO17075-1     | 8.814        |      | 0.62          |                      |
| 2300 | ISO17075-1     | 8.91         |      | 0.69          |                      |
| 2301 | ISO17075-1     | 9.74         |      | 1.34          |                      |
| 2310 | ISO17075-1     | 8.94         |      | 0.71          |                      |
| 2311 | ISO17075-1     | 8.42         |      | 0.31          |                      |
| 2320 | In house       | 6.766        |      | -0.98         |                      |
| 2330 | ISO17075-1     | 6.709        |      | -1.02         |                      |
| 2347 | ISO17075-1     | 7.8          |      | -0.17         |                      |
| 2350 | ISO17075-1     | 7.427        |      | -0.46         |                      |
| 2352 | ISO17075-1     | 7.720        |      | -0.23         |                      |
| 2357 | ISO17075-1     | 8.19         |      | 0.13          |                      |
| 2358 | ISO17075-1     | 7.1          |      | -0.72         |                      |
| 2363 | ISO17075-1     | 8.046        |      | 0.02          |                      |
| 2365 | ISO17075-1     | 8.35         |      | 0.26          |                      |
| 2366 | ISO17075-1     | 7.95         |      | -0.06         |                      |
| 2369 | ISO17075-1     | 8.102        |      | 0.06          |                      |
| 2370 | ISO17075-1     | 7.27         |      | -0.58         |                      |
| 2375 | ISO17075-1     | 8.78         |      | 0.59          |                      |
| 2378 | GB/T22807      | 8.1          |      | 0.06          |                      |
| 2379 | ISO17075-1     | 8.791        |      | 0.60          |                      |
| 2380 | ISO17075-1     | 8.073        |      | 0.04          |                      |
| 2385 | ISO17075-1     | 7.86         |      | -0.13         |                      |
| 2390 | ISO17075-1     | 8.146        |      | 0.10          |                      |
| 2425 | ISO17075-1     | 8.10         |      | 0.06          |                      |
| 2426 | ISO17075-1     | 8.01         |      | -0.01         |                      |
| 2442 | ISO17075-1     | 7 348        |      | -0.52         |                      |
| 2449 | ISO17075-1     | 7.65         |      | -0.29         |                      |
| 2452 | ISO17075-1     | 7 111        |      | -0.23         |                      |
| 2460 | ISO17075-1     | 8 020        |      | -0.71         |                      |
| 2400 | ISO17075-1     | 7 927        |      | _0.07         |                      |
| 2473 | BV/L B82-02-11 | 7.05         |      | -0.07         |                      |
| 2486 | ISO17075-1     | 9 4 3 7      |      | 1 10          |                      |
| 2500 | ISO17075-1     | 9.407        |      | 0.76          |                      |
| 2500 | ISO17075-1     | 10 820       |      | 0.70<br>2.10  |                      |
| 2504 | ISO17075-1     | 7 2813       |      | _0 52         |                      |
| 2011 | ISO17075 1     | 0.613        |      | 1 0/          |                      |
| 2515 | ISO17075-1     | 7.45         |      | 1.24<br>_0.44 |                      |
| 2520 | ISO17075-1     | 9.43         |      | -0.44         |                      |
| 2000 | ISO17075 1     | 8.20         |      | 0.14          |                      |
| 2049 |                | 0.20         |      | 0.14          |                      |
| 2000 | III IIUUSE     | 3.312        |      | 1.47          |                      |
| 2001 | 19017075 1     | 0.44         |      | 1 40          |                      |
| 2000 | 13017073-1     | J.44         |      | 1.10          |                      |
| 2010 |                |              |      |               |                      |

### Spijkenisse, June 2022

| lab          | method                   | value          | mark | z(targ)   | remarks                                |
|--------------|--------------------------|----------------|------|-----------|----------------------------------------|
| 2582         |                          |                |      |           |                                        |
| 2590         | ISO17075-1               | 8.08           |      | 0.05      |                                        |
| 2591         | ISO17075-1               | 7.07           |      | -0.74     |                                        |
| 2602         | 9 04 BVL B82-02-11, mod  | 1.J<br>8.03    |      | -0.56     |                                        |
| 2605         | 15017075-1               | 0.03           |      | 0.01      |                                        |
| 2624         | ISO17075-1               | 7 396          |      | -0.49     |                                        |
| 2637         | ISO17075-1               | 5.95           |      | -1.61     |                                        |
| 2643         | ISO17075-1               | 8.033          |      | 0.01      |                                        |
| 2649         | ISO17075-1               | 7.6            |      | -0.33     |                                        |
| 2652         | ISO17075-1               | 8.555          |      | 0.41      |                                        |
| 2656         | 10017075 1               |                |      |           |                                        |
| 2668         | ISO17075-1               | 8.27           |      | 0.19      |                                        |
| 2074         | ISO17075-1               | 7.07<br>0.127  |      | -0.12     |                                        |
| 2695         | ISO17075-1               | not analyzed   |      |           |                                        |
| 2701         | ISO17075-1               | 9.72           |      | 1.32      |                                        |
| 2703         |                          |                |      |           |                                        |
| 2711         |                          |                |      |           |                                        |
| 2734         |                          |                |      |           |                                        |
| 2/3/         | ISO17075-1               | 8.5150         |      | 0.38      |                                        |
| 2756         | 19017075-1               | <br>7 38       |      |           |                                        |
| 2765         | ISO17075-1               | 6 55           |      | -0.50     |                                        |
| 2777         |                          | 11.066         |      | 2.37      |                                        |
| 2778         |                          | 10.150         |      | 1.65      |                                        |
| 2787         | ISO17075-1               | 10.416         | С    | 1.86      | first reported 20.738                  |
| 2806         | ISO17075-1               | 9.8            |      | 1.38      |                                        |
| 2823         | ISO17075-1               | 6.3649         |      | -1.29     |                                        |
| 2826         | ISO17075-1               | 8.06           |      | 0.03      |                                        |
| 2029<br>2844 | ISO17075-1<br>ISO17075-1 | 7.307          |      | -0.51     |                                        |
| 2860         | ISO17075-1               | 7.82           |      | -0.72     |                                        |
| 2867         | ISO17075-1               | 7.82           |      | -0.16     |                                        |
| 2882         | ISO17075-1               | Not detectable |      |           | possibly a false negative test result? |
| 2910         | ISO17075-1               | 7.886          |      | -0.11     |                                        |
| 2917         | ISO17075-1               | 6.693          |      | -1.03     |                                        |
| 2926         | ISO17075-1               | 7.785          |      | -0.18     |                                        |
| 2949<br>2055 | ISO17075-1<br>ISO17075-1 | 7.505<br>8.6   |      | -0.40     |                                        |
| 2960         | ISO17075-1               | 10.550         |      | 1.97      |                                        |
| 2961         | ISO17075-1               | 8.280          |      | 0.20      |                                        |
| 2963         | ISO17075-1               | 8.82           |      | 0.62      |                                        |
| 2967         |                          |                |      |           |                                        |
| 2977         | ISO17075-1               | not determined |      |           |                                        |
| 2980         | ISO17075-1               | /<br>0.04      |      | -0.79     |                                        |
| 2902         | ISO17075-1               | 7 4508         |      | -0.44     |                                        |
| 2990         | ISO17075-1               | 8.383          |      | 0.28      |                                        |
| 2994         |                          | 8.68           |      | 0.51      |                                        |
| 3100         | ISO17075-1               | 8.1476         |      | 0.10      |                                        |
| 3116         | ISO17075-1               | 8.4643         |      | 0.34      |                                        |
| 3118         | ISO17075-1               | 8.8796         |      | 0.67      |                                        |
| 3153         | 1501/0/5-1               | 0.512          |      | -1.1/     |                                        |
| 3160         | ISO17075-1               | <br>6 61       |      | <br>_1 10 |                                        |
| 3172         | ISO17075-1               | 7.261          |      | -0.59     |                                        |
| 3197         | ISO17075-1               | 8.0            |      | -0.02     |                                        |
| 3209         | ISO17075-1               | 7.58           |      | -0.34     |                                        |
| 3210         |                          |                |      |           |                                        |
| 3214         | ISO17075-1               | 8.1            |      | 0.06      |                                        |
| 3216         | 1501/0/5-1               | 7.11           |      | -0.71     |                                        |
| 3218<br>3228 | ISO17075-1               | <br>7 95       |      | -0.06     |                                        |
| 3230         | In house                 | 4 51552        |      | -0.00     |                                        |
| 3233         | ISO17075-1               | 5.129          |      | -2.25     |                                        |
| 3237         | ISO17075-1               | 7.17           |      | -0.66     |                                        |
| 3248         | ISO17075-1               | 8.5            |      | 0.37      |                                        |
| 3250         | ISO17075-1               | 9.41           |      | 1.08      |                                        |







# Determination of Chromium (VI) (chromatographic) in sample #22540; results in mg/kg

| lah          | method     | valuo             | mark      | z(tara) | romarke             |
|--------------|------------|-------------------|-----------|---------|---------------------|
| 110          | ISO17075-2 | 7 74              | mark      |         | i viiuitte          |
| 210          | ISO17075-2 | 7.74              |           | -0.04   |                     |
| 362          | 18011013-2 | 1.55              |           | 0.15    |                     |
| 523          |            |                   |           |         |                     |
| 551          |            |                   |           |         |                     |
| 623          | 19017075 2 | 4 17              |           | 2 00    | first reported 3 15 |
| 023<br>940   | 15017075-2 | 7.0               | 0,1(0.03) | -2.99   | list reported 5.15  |
| Q/1          | 15017075 2 | 7.0               |           | 0.01    |                     |
| 1010         | 13017073-2 | 7.5               |           | -0.41   |                     |
| 2102         |            |                   |           |         |                     |
| 2102         | 19017075-2 | 9.36              |           | 1 30    |                     |
| 2120         | 10011013-2 | 5.50              |           | 1.00    |                     |
| 2120         |            |                   |           |         |                     |
| 2128         |            |                   |           |         |                     |
| 2132         | ISO17075-2 | 7 69              |           | -0.08   |                     |
| 2135         | 100110102  |                   |           |         |                     |
| 2137         |            |                   |           |         |                     |
| 2146         |            |                   |           |         |                     |
| 2159         | ISO17075-2 | 7 63              |           | -0.13   |                     |
| 2165         | 100110102  |                   |           |         |                     |
| 2166         | In house   | 6 519             |           | -1.05   |                     |
| 2201         | ISO17075-2 | N/A               |           |         |                     |
| 2215         | ISO17075-2 | 8 444             |           | 0.54    |                     |
| 2223         | In house   | 7 007             |           | -0.65   |                     |
| 2228         |            |                   |           |         |                     |
| 2230         |            |                   |           |         |                     |
| 2232         |            |                   |           |         |                     |
| 2241         |            |                   |           |         |                     |
| 2250         | ISO17075-2 | 65                | С         | -1 07   | first reported 4 6  |
| 2256         |            |                   | C         |         |                     |
| 2290         | ISO17075-2 | 7.5               |           | -0.24   |                     |
| 2297         | ISO17075-2 | 8.421             |           | 0.52    |                     |
| 2300         |            | not analyzed      |           |         |                     |
| 2301         |            |                   |           |         |                     |
| 2310         | ISO17075-2 | 9                 |           | 1.00    |                     |
| 2311         | ISO17075-2 | 8.43              |           | 0.53    |                     |
| 2320         |            |                   |           |         |                     |
| 2330         | ISO17075-2 | 7.147             |           | -0.53   |                     |
| 2347         |            |                   |           |         |                     |
| 2350         | ISO17075-2 | 7.449             |           | -0.28   |                     |
| 2352         |            |                   |           |         |                     |
| 2357         | ISO17075-2 | 8.10              |           | 0.26    |                     |
| 2358         | ISO17075-2 | 7.44              |           | -0.29   |                     |
| 2363         | ISO17075-2 | 8.213             |           | 0.35    |                     |
| 2365         | ISO17075-2 | 8.26              |           | 0.39    |                     |
| 2366         |            | out of capability |           |         |                     |
| 2369         |            |                   |           |         |                     |
| 2370         | ISO17075-2 | 7.05              |           | -0.61   |                     |
| 2375         | ISO17075-2 | 8.47              |           | 0.56    |                     |
| 2378         | GB/T38402  | 8.0               |           | 0.17    |                     |
| 2379         | ISO17075-2 | 7.902             |           | 0.09    |                     |
| 2380         | ISO17075-2 | 7.907             |           | 0.10    |                     |
| 2385         | ISO17075-2 | 8.02              |           | 0.19    |                     |
| 2390         | ISO17075-2 | 8.475             |           | 0.57    |                     |
| 2425         |            |                   |           |         |                     |
| 2426         |            |                   |           |         |                     |
| 2442         |            |                   |           |         |                     |
| 2449         |            |                   |           |         |                     |
| 2452         | ISO17075-2 | 7.394             |           | -0.33   |                     |
| 2460         |            |                   |           |         |                     |
| 2475         |            |                   |           |         |                     |
| 2482         | ISO17075-2 | 7.28              |           | -0.42   |                     |
| 2486         | ISO17075-2 | 8.897             |           | 0.92    |                     |
| 2500         |            |                   |           |         |                     |
| 2504         | 10047075 0 | not applicable    |           |         |                     |
| 2511         | 1501/0/5-2 | 1.0609            |           | -0.60   |                     |
| 2515         | 1501/0/5-2 | 9.131             |           | 1.61    |                     |
| 2520         |            |                   |           |         |                     |
| 2030         |            |                   |           |         |                     |
| 2549         |            |                   |           |         |                     |
| 2000         | 10017075 0 | <br>6 20          |           | 1 05    |                     |
| 2001         | 13017075 2 | 0.20              |           | -1.20   |                     |
| 2000<br>2572 | 1301/0/5-2 | 9.24              |           | 1.20    |                     |
| 2010         |            |                   |           |         |                     |

| lab  | method      | value            | mark    | z(targ) | remarks |
|------|-------------|------------------|---------|---------|---------|
| 2582 |             |                  |         |         |         |
| 2590 | ISO17075-2  | 7.93             |         | 0.12    |         |
| 2591 | ISO17075-2  | 7.05             |         | -0.61   |         |
| 2602 | ISO17075-2  | 7.23             |         | -0.46   |         |
| 2605 | 100/-0      |                  |         |         |         |
| 2610 | ISO17075-2  | 5.08             |         | -2.24   |         |
| 2624 |             |                  |         |         |         |
| 2643 |             |                  |         |         |         |
| 2649 | ISO17075-2  | 7.7              |         | -0.07   |         |
| 2652 |             |                  |         |         |         |
| 2656 | In house    | 6.15             |         | -1.36   |         |
| 2668 | ISO17075-2  | 8.15             |         | 0.30    |         |
| 2674 | 100 (7077 0 |                  |         |         |         |
| 2675 | ISO17075-2  | 8.768            |         | 0.81    |         |
| 2695 | 15017075-2  | 8.6798           |         | 0.74    |         |
| 2701 | 19017075-2  | 7 884646525      |         | 0.08    |         |
| 2711 | ISO17075-2  | 7.26             |         | -0.44   |         |
| 2734 | ISO17075-2  | 10.62            |         | 2.34    |         |
| 2737 | ISO17075-2  | 8.200            |         | 0.34    |         |
| 2749 | ISO17075-2  | 7.47             |         | -0.26   |         |
| 2756 |             |                  |         |         |         |
| 2765 |             |                  |         |         |         |
| 2779 |             |                  |         |         |         |
| 2787 |             |                  |         |         |         |
| 2806 | ISO17075-2  | 8.6              |         | 0.67    |         |
| 2823 |             |                  |         |         |         |
| 2826 |             |                  |         |         |         |
| 2829 |             |                  |         |         |         |
| 2844 | ISO17075-2  | 8.3              |         | 0.42    |         |
| 2860 |             |                  |         |         |         |
| 2007 |             |                  |         |         |         |
| 2002 |             |                  |         |         |         |
| 2917 | In house    | 6.738            |         | -0.87   |         |
| 2926 |             |                  |         |         |         |
| 2949 |             |                  |         |         |         |
| 2955 |             |                  |         |         |         |
| 2960 |             |                  |         |         |         |
| 2961 |             |                  |         |         |         |
| 2903 | 19017075-2  | 17.08            | R(0.01) | 7.68    |         |
| 2977 | ISO17075-2  | 10.17            | 1(0.01) | 1.97    |         |
| 2980 | ISO17075-2  | 7                |         | -0.65   |         |
| 2982 |             |                  |         |         |         |
| 2989 |             | NA               |         |         |         |
| 2990 |             |                  |         |         |         |
| 2994 | 10017075 0  |                  |         |         |         |
| 3100 | 15017075-2  | 7.9170<br>9.2370 |         | 0.11    |         |
| 3118 | 10011013-2  | 0.2373           |         | 0.57    |         |
| 3153 | ISO17075-2  | 7.231            |         | -0.46   |         |
| 3154 | ISO17075-2  | 7.56             |         | -0.19   |         |
| 3160 | ISO17075-2  | 6.76             |         | -0.85   |         |
| 3172 | ISO17075-2  | 7.203            |         | -0.49   |         |
| 3197 | ISO17075-2  | 8.8              |         | 0.83    |         |
| 3209 | ISO17075-2  | 7.71             |         | -0.07   |         |
| 3210 | in nouse    | 1.020            |         | -0.03   |         |
| 3214 | ISO17075-2  | Not Analyzed     |         |         |         |
| 3218 |             |                  |         |         |         |
| 3228 |             |                  |         |         |         |
| 3230 | In house    | not applicable   |         |         |         |
| 3233 | ISO17075-2  | 5.537            |         | -1.86   |         |
| 3237 |             |                  |         |         |         |
| 3248 |             |                  |         |         |         |
| 3230 |             |                  |         |         |         |

| normality              | suspect |           |  |
|------------------------|---------|-----------|--|
| n                      | 64      |           |  |
| outliers               | 2       |           |  |
| mean (n)               | 7.790   |           |  |
| st.dev. (n)            | 0.9832  | RSD = 13% |  |
| R(calc.)               | 2.753   |           |  |
| st.dev.(ISO17075-2:17) | 1.2095  |           |  |
| R(ISO17075-2.17)       | 3 387   |           |  |





# **APPENDIX 2** Analytical details

|      |                      |                   | time between opening of the      |                |                     |
|------|----------------------|-------------------|----------------------------------|----------------|---------------------|
|      | ISO/IEC 17025        |                   | vacuum packed sample and         | pH before      |                     |
| lab  | accredited           | sample intake (q) | extraction (min)                 | extraction     | pH after extraction |
| 110  | Ves                  | 2.0 gram          | less than an hour                | 85             | 85                  |
| 210  | Ves                  | 2.0 gram          |                                  | 0.5            | 0.5                 |
| 262  | Voc                  | 29                | immodiately                      | 8 03           | 7.62                |
| 522  | No                   | 29<br>10 a        |                                  | 0.03<br>9.0    | 8.0                 |
| 525  | NO                   | 1.0 g             | 1.0 11                           | 0.0            | 8.0                 |
| 201  | <br>Voo              | 4                 | F                                | 7.00           | 7 70                |
| 023  | Yes                  | 1                 | 5<br>20 min e                    | 7.99           | 7.72                |
| 840  | Yes                  | 1 gram            | 30 mins                          | 8.0            | 7.85                |
| 841  | res                  | 1 grams           | 5 minutes                        | 8.0            | 7.8                 |
| 1910 | Yes                  | 2,00              | / min                            | 8,01           | 7,60                |
| 2102 | No                   | 2 gram            | 12 hours                         | 8.0            | 8.0                 |
| 2115 | Yes                  | 1 g               | immediately                      | 8.0 pH         | 8.0 pH              |
| 2120 | No                   | 0,5 g             | 15 min                           | 8,05           | 7,78                |
| 2121 | Yes                  | m = 2.0089 g      | 5 minutes                        | pH = 8         | pH = 7,6            |
| 2128 | Yes                  | 1-2 g             | <5 min                           | pH 8,0         | pH 7,9              |
| 2132 | Yes ISO 17075-1 only | 2 grams           | less than 60 minutes             | 8.00           | 7.64                |
| 2135 | Yes                  | 1                 | 10 min.                          | 8,0            | not tested          |
| 2137 | Yes                  | 1                 | 1 min                            | 8.01           | 7.92                |
| 2146 | No                   | 2.5 g             | 30 min                           | 8,0            | 7,5                 |
| 2159 | Yes                  | 1.0 g             | 90 minutes                       | 7.9            | 7.7                 |
| 2165 | Yes                  | 1.000g            | immediately                      | 8.0            | 7.6                 |
| 2166 | Yes                  | 2 g               | 5 Min                            | 8 09           | 7 66                |
| 2201 |                      | 1 0124a           | 1hour                            | nH=7.90        | nH=7 61             |
| 2215 | Yes                  | 1 0089            | 180min                           | 80             | 75                  |
| 2223 | Ves                  | 2 d               |                                  | 8              | 75-8                |
| 2223 | Ves                  | 2 9<br>1 0508     | 20                               | 7 87           | 7.0-0               |
| 2220 | Vea                  | 1.0030            | immodiatly                       | nU-00          | nU-77               |
| 2230 | Vee                  | 1.0043            | linineulally                     | μπ-ο.υ<br>7.07 | μπ- <i>τ.τ</i>      |
| 2232 | Yes                  | 2grams            | less than 1 minute               | 1.97           | 7.55                |
| 2241 | res                  | 2.0032 g          | 5 minutes                        | pH=7.98        | pH=7.68             |
| 2250 | Yes                  | 2                 | 24 h                             | 8              | 8                   |
| 2256 | Yes                  | 1.0032            | 1 minute                         | 7.989          | 7.678               |
| 2290 | Yes                  |                   |                                  |                |                     |
| 2297 | Yes                  | 1.0028            | 5                                | 8.02           | 8.05                |
| 2300 | Yes                  | 2gram.            | 15 minutes                       | 8.07           | 7.65                |
| 2301 | Yes                  | 1.0030            | 4 min                            | 7.98           | 7.96                |
| 2310 | Yes                  | 1                 | Sample used as such              | 8              | 7.7                 |
| 2311 | Yes                  | 2g                |                                  | 8              | 7.7                 |
| 2320 | Yes                  | 1 g               | 15 Minutes                       | 8.05           | 7.95                |
| 2330 | Yes                  | 1g                | 30 min                           | 8.00           | 7.68                |
| 2347 |                      | -                 |                                  |                |                     |
| 2350 | Yes                  | 2.0008g           | immediately                      | pH 8.01        | pH 7.81             |
| 2352 | Yes                  | 2.0060g           | 30min                            | 8.01           | 7.65                |
| 2357 |                      | 0                 |                                  |                |                     |
| 2358 | Yes                  | 2.0 g             | N/A                              | 7.8            | 7.6                 |
| 2363 | Yes                  | 2g*2              | 30mins                           | 8              | 7-8                 |
| 2365 | Yes                  | 2.0g              | 60min                            | 7.96           | 7.85                |
| 2366 | Yes                  | 1                 | within 10minutes                 | 7.9-8.1        | 7 0-8 0             |
| 2369 | Yes                  | 10                | less than 5 minutes              | 78             | 8                   |
| 2370 | Ves                  | 2 d               | 30 min                           | nH = 8.0       | nH = 7.7            |
| 2375 | Ves                  | 2 g<br>1g         | Shours                           | 8              | 77                  |
| 2378 | Ves                  | 20                | 30min                            | 8              | 7.8                 |
| 2010 | 100                  | <del>-</del> 9    | Time opening = 10 minute         | 0              | 1.0                 |
| 2370 | Yes                  | 1 g / 50 ml       | Time extraction = 180 minute     | nH = 8.00      | nH = 7.86           |
| 2313 | Voc                  | 10 a              | 2 Minuto                         | 90 - 0.00      | 77                  |
| 2300 | Vee                  | 1.0 g             | z minute<br>F                    | 0.0            | 7.6                 |
| 2303 | Vec                  | 2 0020~           | J                                | 0,0            | 7,0                 |
| 2390 | Yes                  | 2.0020g           | 5 min                            | 8.00           | 7.62                |
| 2425 | Yes                  | 1.0 g             | 10 minutes                       | 0.04           | 7.0                 |
| 2426 | Yes                  | 2.0073            | within 30 min                    | 8.01           | 7.6                 |
| 2442 | Yes                  | 2g                | 5 minutes                        | 8.01           | 7.9                 |
| 2449 | Yes                  | 1.0 GRAM          | 01 HOUR                          | 8.0            | 7.6                 |
| 2452 | Yes                  | 1                 | 60                               | 8              | 7.7                 |
| 2460 | Yes                  | 2 g               | 5 min then 180 min in extraction | 8.02           | 7.64                |
| 2475 | No                   | 2.11g             | Few minutes                      | 8              | 1.6                 |
| 2482 | Yes                  | 1.0 g             | up to 30 min                     |                |                     |
| 2486 | Yes                  | 1.008 g           | 10 minutes                       | 8.0            | 7.90                |
| 2500 | Yes                  | about 1 g         | 30min                            | 8.2            | 7.8                 |
| 2504 | Yes                  | 1.00 g            | 20 minutes                       | 8.02           | 7.7                 |
| 2511 | Yes                  |                   |                                  |                |                     |
| 2515 | Yes                  | About 1 g         | 30 minutes                       | 8.0            | 7.69                |
| 2520 | No                   | 2gm               | 240 minutes                      | 8              | 7.23                |
| 2536 | No                   | 1.0033            | Immediately within 5 minuets     | 8.0            | 7.9                 |
| 2549 | Yes                  | 2 grams           | 10 mins                          | 8.0            | 7.9                 |
| 2553 | Yes                  | 1g                | 180mins                          | 8.0            | 8.0                 |
| 2561 | Yes                  | 2                 | 10                               | 8              | 8                   |

|              |                     |                            | time between opening of the |                |                     |
|--------------|---------------------|----------------------------|-----------------------------|----------------|---------------------|
|              | ISO/IEC 17025       |                            | vacuum packed sample and    | pH before      |                     |
| lab          | accredited          | sample intake (g)          | extraction (min)            | extraction     | pH after extraction |
| 2566         | Yes                 | 1.0002 gm                  | within minute               | 8.0            | 7.6                 |
| 2573         |                     |                            |                             |                |                     |
| 2502         | <br>Vos             | 10                         | 10 min                      | 8.01           | 77                  |
| 2590         | Ves                 | 2 0 grams                  | 30 mins                     | 7.6            | 7.6                 |
| 2602         | Yes                 | 1 00 a                     | about 30 min                | 8.03           | 7.65                |
| 2605         | Yes                 | 4a                         | 30min                       | 8.02           | 7.80                |
| 2610         | Yes                 | 2.0499                     | 5 minutes                   | 8.00           | 7.56                |
| 2624         | No                  | 4                          | 30                          | 8.04           | 8                   |
| 2637         | Yes                 | 500 mg                     | 1 h                         |                |                     |
| 2643         | Yes                 | 1 g                        | about 5 minutes             | 7.9            | 7.9                 |
| 2649         | Yes                 | 2 grams                    | 10 mins                     | 7.0 to 8.0     | 7.0 to 8.0          |
| 2652         | Yes                 | 1.0080g                    | 10mins                      | 8.04           | 8.01                |
| 2656         | No                  | 1 gram                     | 30 min                      | 8              | - 77                |
| 2008         | Yes                 | 1.0 gms                    | Immediately after open      | 8.U<br>9.01    | 1.1                 |
| 2675         | Ves                 | 1y z<br>2 a                | 5 Minuten                   | 8.00           | 7.00                |
| 2695         | Yes                 | 29                         | 10 minutes                  | 7 94           | 7 64                |
| 2701         | Yes                 | 1a                         | 3.5 hour                    | 8.00           | 7.94                |
| 2703         | Yes                 | 2.0157a                    | Unrecorded                  | pH 8.0 +/- 0.1 | 7.65                |
| 2711         | No                  | 1.019g                     | Abaut 10 minutes            | 8.034          | 7.657               |
| 2734         | Yes                 | 2g                         | 10                          | 8,0            |                     |
| 2737         | Yes                 | 1g                         | 120min                      | 8.01           | 7.98                |
| 2749         | No                  | 2 x 1 g                    | 5 Minuten                   | 8.0            | 7 - 8               |
| 2756         | Yes                 | _                          |                             |                |                     |
| 2765         | Yes                 | 2                          | 15                          | 7.6            | 7.7                 |
| 2777         | Yes                 | 1.0gram                    | 1 hour                      | 7.99           | 7.94                |
| 2110         | Yes                 | 4y<br>2 a                  | 20mms                       | 0.0±0.1        | 7.0                 |
| 2806         | Ves                 | 29                         | 1 11111                     | 1,9            | 1,1                 |
| 2823         | Yes                 | 2 0089a                    | Less than 5 minutes         | pH 8 07        | pH 7 65             |
| 2826         | Yes                 | 2a                         | 1 week                      | 8.0            | 7.5                 |
| 2829         | Yes                 | 2                          | 5                           | 8              | 7.7                 |
| 2844         | Yes ISO17025-2 only | 2.0201 g/ 2.0250 g         | 30 min                      | 8.010          | 7.651               |
| 2860         | Yes                 | 1,0000 g                   | 30 min                      | 7,91           | 7,77                |
| 2867         | Yes                 | 2.0g                       | one hour                    | 8.00           | 7.77                |
| 2882         | Yes                 | 2 gram                     | 5 min                       | 8.01           | between 7 & 8       |
| 2910         | Yes                 | 1.0g                       | 30minutes                   | 8.0            | 7.6                 |
| 2917         | Yes                 | 1) 2.0183 2) 2.0466        | less than 5 minutes         | pH 8,00        | pH 7,59/ pH 7,48    |
| 2926         | NO                  | 2.01g                      | 5 minutes<br>5 min          | 7.92           | 7.55<br>7.55        |
| 2949         | NU                  | 2.0 g<br>1 0               | 5 11111                     | 0.01<br>8.0    | 7.55                |
| 2955         | Yes                 | 4.0 gram                   | Within 30 minutes           | 8.04           | 0.0<br>7.67         |
| 2961         | No                  | 1 a                        | 5 min                       | 8              | 7.5-8               |
| 2963         | Yes                 | 2.0076g                    | 2min                        | 7.95           | 7.69                |
| 2967         | No                  | 2,0 grams                  | 10 minutes                  | 8.03           | 7.63                |
| 2977         | No                  | 4 g                        | 20 days                     | 8,00           | 7,98                |
| 2980         | No                  | 2                          | 10                          | 8.0            | 7.6                 |
| 2982         | Yes                 | 2.0g                       | 5 mins                      | 7.9            | 7.7                 |
| 2989         | No                  | 2 gms                      | 2 min                       | 8.0            | 7.5                 |
| 2990         | Yes                 | about 4 grams              | 5 minutes                   | 7.94           | 7.58                |
| 2994         | No                  | 0.5045g                    | 5 days                      | 8.00           | 1.13                |
| 3100         | Yes                 | 2g<br>1 grom               | 2min<br>Immodiately         | 8.00           | 1.1Z<br>7.6         |
| 3110         | Yes                 | 1 gram                     | 15 minutos                  | 7.9            | 7.0<br>7.77         |
| 3153         | Yes                 | 0.5 gram                   | 10 minutes                  | 7.6            | 7.41                |
| 3154         | Yes                 | 1                          | To minutes                  | 1.0            | 7.41                |
| 3160         | Yes                 | 1 gram                     | 10 minutes                  | 8,0            | 7,8                 |
| 3172         |                     | 1                          | 5                           | 8.00           | 7.62                |
| 3197         | Yes                 | 2                          | 10                          | 8,0            | 7,7                 |
| 3209         | Yes                 | 1g                         | 2min                        | 7.9            | 7.5                 |
| 3210         | Yes                 | 1,001                      | 14                          | 7,98           | 7,72                |
| 3214         | Yes                 | 1g                         | 10mins                      | 7.938          | 7.620               |
| 3216         | Yes                 | 2,046g / 2,026g            | time to weigh the sample    | pH = 8,01      | pH = 7,99           |
| 3218         |                     | 2.0                        | Loss than 10min             | 8.0            | 70 80               |
| 3∠∠ŏ<br>3330 | <br>Voc             | 2.U<br>2.0052a / 2.0056a   |                             | 0.U<br>8.02    | 1.U - 0.U<br>7.55   |
| 3233         | No                  | 2.00329/2.00309<br>1.0698a | l ess than 15 min           | 8.02           | 8.02                |
| 3237         | Yes                 | 2a                         | the same time               | 8.02           | 7.72                |
| 3248         | Yes                 | 2                          | 4 minutes                   | 8.03           | 7.60                |
| 3250         | Yes                 | 1                          | 5-10 mins                   | 8              | 8                   |

#### **APPENDIX 3**

#### Number of participants per country

8 labs in BANGLADESH 2 labs in BRAZIL 1 lab in BULGARIA 2 labs in CAMBODIA 2 labs in EGYPT 1 lab in ETHIOPIA 1 lab in FINLAND 7 labs in FRANCE 11 labs in GERMANY 8 labs in HONG KONG 6 labs in INDIA 3 labs in INDONESIA 11 labs in ITALY 4 labs in KOREA, Republic of 1 lab in MAURITIUS 4 labs in MEXICO 1 lab in MOROCCO 29 labs in P.R. of CHINA 5 labs in PAKISTAN 1 lab in POLAND 1 lab in PORTUGAL 2 labs in SERBIA 1 lab in SINGAPORE 5 labs in SPAIN 3 labs in SRI LANKA 3 labs in SWITZERLAND 3 labs in TAIWAN 2 labs in THAILAND 1 lab in THE NETHERLANDS 2 labs in TUNISIA 4 labs in TURKEY 1 lab in U.S.A. 3 labs in UNITED KINGDOM 4 labs in VIETNAM

## **APPENDIX 4**

### Abbreviations

| С        | = final test result after checking of first reported suspect test result           |
|----------|------------------------------------------------------------------------------------|
| D(0.01)  | = outlier in Dixon's outlier test                                                  |
| D(0.05)  | = straggler in Dixon's outlier test                                                |
| G(0.01)  | = outlier in Grubbs' outlier test                                                  |
| G(0.05)  | = straggler in Grubbs' outlier test                                                |
| DG(0.01) | = outlier in Double Grubbs' outlier test                                           |
| DG(0.05) | = straggler in Double Grubbs' outlier test                                         |
| R(0.01)  | = outlier in Rosner's outlier test                                                 |
| R(0.05)  | = straggler in Rosner's outlier test                                               |
| E        | = calculation difference between reported test result and result calculated by iis |
| W        | = test result withdrawn on request of participant                                  |
| ex       | = test result excluded from statistical evaluation                                 |
| n.a.     | = not applicable                                                                   |
| n.e.     | = not evaluated                                                                    |
| n.d.     | = not detected                                                                     |
| fr.      | = first reported                                                                   |
| f+?      | = possibly a false positive test result?                                           |
| f-?      | = possibly a false negative test result?                                           |
| SDS      | = Safety Data Sheet                                                                |

## Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- 12 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)